解煜


解煜

个人简介

解煜,博士,中共党员,中国人工智能学会会员,中国自动化学会会员,IEEE Member20179月进入同济大学电子与71886a必赢直接攻博,隶属于嵌入式系统与服务计算教育部重点实验室及上海网络金融安全协同创新中心。博士期间跟随中国工程院院士、网络金融安全领域带头人蒋昌俊教授一直从事机器学习、网络交易反欺诈、金融风险防控、深度学习以及表示学习等方面的研究工作,作为研究骨干多次参与相关领域的国家级、省部级以及企业横向项目。在国内外期刊与会议上发表学术论文10余篇,代表性论文发表在IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Automation Science and EngineeringIEEE Transactions on Computational Social Systems, IEEE/CAA Journal of Automatica Sinica等相关领域著名刊物上,担任多个国际/国内期刊和会议审稿人。20229月获得工学博士学位,同年11月加入71886a必赢。

联系方式

办公室:71886a必赢405

邮箱:xieyu@shmtu.edu.cn

教育经历

2017-09  2022-09, 同济大学大学, 计算机科学与技术, 工学博士

2013-09  2017-06, 青岛大学, 信息安全, 工学学士

发表论文

Y. Xie, G. Liu, M. Zhou(*), L. Wei, H. Zhu(*), R. Zhou and L. Cao, A Spatial–Temporal Gated Network for Credit Card Fraud Detection by Learning Transactional Representations, IEEE Transactions on Automation Science and Engineering, 2023. (1 区,CCF-B)

Y. Xie, G. Liu, C. Yan, C. Jiang(*), M. Zhou(*) and M. Li, Learning Transactional Behavioral Representations for Credit Card Fraud Detection. IEEE Transactions on Neural Networks and Learning Systems, 2022. (1 区,CCF-B)

Y. Xie, G. Liu, C. Yan, C. Jiang(*), M. Zhou(*), Time-Aware Attention-Based Gated Network for Credit Card Fraud Detection by Extracting Transactional Behaviors. IEEE Transactions on Computational Social Systems, vol. 10, no. 3, pp. 1004-1016, 2023. (2区,CCF-C)

H. Zhu, M. C. Zhou(*), Y. Xie(*), and A. Albeshri, A self-adapting and efficient dandelion algorithm and its application to feature selection for credit card fraud detection, IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 2, pp. 1–14, Feb. 2024. (1区,通讯作者)

Y. Xie, G. Liu, M. Zhou(*), L. Wei, H. Zhu(*) and R. Zhou, A Spatial-temporal Gated Network for Credit Card Fraud Detection, 2023 IEEE International Conference on Networking, Sensing and Control (ICNSC), Marseille, France, 2023, pp. 1-6.

Y. Xie, G. Liu, R. Cao, Z. Li, C. Yan and C. Jiang(*), A Feature Extraction Method for Credit Card Fraud Detection. IEEE International Conference on Intelligent Autonomous Systems (ICoIAS), 2019, pp. 70-75.

Q. Li(*), Y. Xie(*), A Behavior-cluster Based Imbalanced Classification Method for Credit Card Fraud Detection. ACM International Conference on Data Science and Information Technology, 2019, pp. 134-139. (共一)

X. Wang, Y. Xie, X. Cheng and Z. Jiang, An Efficient Key-Aggregate Keyword Searchable Encryption for Data Sharing in Cloud Storage. 2019 IEEE Globecom Workshops (GC Wkshps), 2019, pp. 1-6.

K. Zhu, Y. Xie, P. Wang, C. Yan, A method of Evaluation for Small and Medium-sized Enterprises. ACM International Conference on Machine Learning and Computing, 2022, pp. 358–367.

R. Cao, G. Liu, Y. Xie, C. Jiang, Two-Level Attention Model of Representation Learning for Fraud Detection. IEEE Transactions on Computational Social Systems, 2021, vol. 8, no. 6, pp. 1291-1301. (CCF-C)

H. Zhu, M. Zhou, G. Liu, Y. Xie, S. Liu and C. Guo, NUS: Noisy-Sample-Removed Undersampling Scheme for Imbalanced Classification and Application to Credit Card Fraud Detection, IEEE Transactions on Computational Social Systems, 2023. (CCF-C)

H. Zhu, G. Liu, M. Zhou, Y. Xie, Q. Kang, Optimizing weighted extreme learning machines for imbalanced classification and application to credit card fraud detection. Neurocomputing, 2020, 407: 50-62. (2Top, CCF-C)

H. Zhu, G. Liu, M. Zhou, Y. Xie, Q. Kang, A Noisy-sample-removed Under-sampling Scheme for Imbalanced Classification of Public Datasets. IFAC-PapersOnLine, 2020, 53(5): 624-629.

D. Zhu, C. Yan, M. Guang and Y. Xie, A Novel Information-Entropy-Based Feature Extraction Method for Transaction Fraud Detection, International Conference on Intelligent Autonomous Systems (ICoIAS), Wuhan, China, 2021, pp. 129-133.


返回原图
/

Baidu
sogou